Predictive Analytics with R Programming

(PEC-IV)

Course Syllabus

Lab Manual

Text Book:

  1. K G Srinivas ,G M Siddesh  “Statistical programming in R”, Oxford Publications.

Reference Books:

  1. Mark Gardener, Beginning R: The Statistical Programming Language, Wrox  
  2. Y. Anchang Zhao: R and Data Mining: Examples and Case Studies . Elsevier in December 2012
  3. Avril Coghlan :  A Little Book of R For Time Series

Course Schedule

Distribution of Hours in Unit – Wise

UnitTopicChaptersTotal No. of Hours
Text Book
IBasics of R                     Ch-19
IIFactors and Data Frames & Lists                     Ch-2,Ch-3  9
IIIIterative Programming in R & Functions in R                     Ch-4,Ch-5  9
IVApply Family in R                     Ch-6  8
VData Interfaces & Statistical Applications                     Ch-7,Ch-8  10
 Total contact classes for Syllabus coverage45
Tutorial Classes : Assignment Tests : (Before Mid1 & Mid2 Examinations)  Online Quiz:

Lecture Plan:

S. No.TopicNo of Lecture HoursTeaching Learning Process
UNIT-1
1Introduction to R1Presentation
 Video
2R-Environment Setup (Install swirl package)Swirl
3Programming with R, Basic Data Types1Presentation
Video
4Creating and Naming Vectors, Vector Arithmetic1Presentation
Video
5Vector Subsetting1Presentation
Video
6Creating and Naming Matrices, Matrix Subsetting,2Presentation
Video
7Arrays1Presentation
Video
8Class Presentation1
UNIT-2
1Introduction to Factors, Factor Levels1Presentation
Video
2Summarizing a Factor  Ordered Factors ,Comparing Ordered Factors1Presentation
Video
Video
3Introduction to Data Frame, Subsetting of Data Frames1Presentation
Video
4Extending Data Frames, Sorting Data Frames1Presentation
Video
Video
5Creating a Named List, Accessing List Elements, Manipulating List Elements, Merging Lists, Converting Lists to Vectors1 Presentation
Video
Video
6Conditionals and Control Flow: Relational Operators, Relational Operators and Vectors2Presentation
Video
7. Logical Operators, Logical Operators and Vectors, Conditional Statements2Presentation
Video 
Video
UNIT-3
1  Iterative Programming in R:  While Loop, For Loop, Looping Over List2 Presentation
2 Functions in R: Introduction, Writing a Function in R, Nested Functions2 Presentation
3 Function Scoping, Recursion1 Presentation
4Loading an R Package, Mathematical Functions in R1 Presentation
5 Cumulative Sums and Products, Calculus in R2 Presentation
6Input and Output Operations. 1 Presentation
Unit-IV
1 Apply Family of Functions in R: Using Apply(), Using Lapply(), Using Sapply().2 Presentation
2  Using Tapply(), Split Function, Using Mapply()2Video-Tapply
Video-Mapply
3 Charts and Graphs : Pie Chart,Chart Legend, 3D Pie Chart, Bar Chart,2 Video-Pie & Bar Chart
Reference Website
4Box Plot, Histogram, Line Graph: Multiple Lines in Line Graph, Scatter Plot.2 Reference Website
UNIT-5
1 Data Interfaces: CSV Files, Syntax, Importing a CSV File,1 Video
Reference Website
2 Excel Files: Syntax, Importing an Excel file.1 Material
3Binary Files: Syntax, XML Files, Web Data, Databases2Binary Files
 XML Material
Web Material
Database
4 Statistical Applications: Basic Statistical Operations, Linear Regression Analysis2Material

 Linear Regression Video
https://www.youtube.com/watch?v=2Sb1Gvo5si8

Multiple Linear Regression Video
https://www.youtube.com/watch?v=q1RD5ECsSB0

Outliers Video
https://www.youtube.com/watch?v=tOAJi9-qDm0
5Chi-Squared Goodness of Fit Test, Chi-Squared Test of Independence2 Material

https://www.youtube.com/watch?v=1RecjImtImY
6Multiple Regression, Time Series Analysis.2Material
 
https://www.youtube.com/watch?v=iTq6fNfi4Rs
Total contact classes for Syllabus coverage: 45

IV Year B.Tech. CSE – I Sem                                                           L       T / P / D     C

                                                                                                                      0           0            1

PREDICTIVE ANALYTICS WITH R PROGRAMMING LAB

(PROFESSIONAL ELECTIVE- IV LAB) (A57221)

Prerequisites : C / Python programming language

Course Objectives :

  1. To learn and apply R programming
  2. To Get exposure on various R data types
  3. To apply appropriately the iterative programming concepts
  4. To apply visualization tools
  5. Understand and apply regression models for Predictive Analytics

Course Outcomes :

Student will able to :

  1. Install and Explore R environment
  2. Apply appropriate data types and operators
  3. Apply iterative programming concepts using various R functions
  4. Visualize data insights using data visualization
  5. Analyze data with Regression Model.

List of Programs:

  1. Installation and Environment set up R and Rstudio
  2. Experiments on Vector Arithmetic operations
  3. Experiments on Matrices operations
  4. Experiments on Arrays
  5. Experiments on Factors
  6. Experiments on Data Frames
  7. Experiments on List operations
  8. Experiments on Logical operations and Conditional Statements
  9. Experiments on looping over lists
  10. Experiments on nested functions and function scoping
  11. Experiments on mathematical functions
  12. Experiments on statistical functions in R
  13. Experiments on lapply, sapply and apply functions.
  14. Experiments on data visualization using charts and graphs
  15. Experiments on Predictive Analytics using regression models